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A7  Analysis of Covariance

The use of additional information in the experimental units as a local control prac-
tice to reduce the estimate of experimental error is the primary subject of this chap-
ter. The values for treatment means in a research study may depend on covariates
that vary among the experimental units and have a significant relationship with the
primary response variable. The analysis of covariance is used in this chapter to re-
move the influence of the covariates on treatment comparisons in completely ran-

domized and complete block designs.

417.1 Local Control with a Measured Covariate

A number of local control techniques are used in experiments 10 control experi-
mental error variance. Local control practices reduce experimental error variance
and increase the precision for estimates of treatment means and tests of hypotheses.
Concomitant variables are often used to select and group units to control experi-
mental error variation.

Many concomitant variables, or covariates, ¢an be measured at any time dur-
ing the course of the experiment, and their influence on the response variable can
be assessed when analyzing the results. The analysis of covariance, combining re-
gression methodology with the analysis of variance, evaluates the influence of the

covariate on the response variable and enables the comparison of treatments on 2

common basis relative to the values of the covariates.
Often, many factors external to the treatment factors influence the response

variable. Blocking on the basis of these influential factors is one of the primary
means used by researchers to control experimental error. When blocks of units are
constructed with similar values for the factors, the experimental treatments can be
compared with one another in a more homogengous environment.
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Fre tl i i

arien c;t;err; a)st) rtlgle ﬁgf:ﬁzr;tatl) setting mlay prohibit blocking of like units for a

) X e incomplete knowledge about i
hmaasteg::al or tll':e eff‘ects of external factors may not appeaf until aﬂ::l fhzxez.g;:;entai
gun. Too few units of like value may exi Fve

. : y exist for ade i
thonilgc:l_ Fhe investigator may have knowledge of the inﬂuenti:}lu?;f:t:riocil:(ling. e
additional factors may prohibit the use of all of them as blocking cr?t,eri ;e
d.

Typical! studies with additio i
. nal varia i
include: bles that influence treatment comparisons

o Clini i i i
cli g,?] tn.als where. age, weight, sex, previous medical history, or occupa-
tion o patients can influence their response to the treatments 1-{lthou hItJh
inves 1gat0}'s can block on two or three of these factors, it is not po %l ;
ignore the influence of the remaining variables ’ posslete

¢ Trials with fruit trees, which are blocked on the basis of soil or irrigation

Ta s S

. Eftedmg c'lrrllal.s_wherel blocks of animals can be constructed on the basis of
o :r anf ;]nltlal welghts, but the amount of feed consumed during the
1se of the study will also have influence on the measured weight ga%ns

The study described in Exam i
ple 17.1 illustrates an experiment i i
: : i wh -
:E_loc;lseb vtarllable is affectf.:d not only by the treatment applied to the sul)jt;f::]sﬂ;l’3 trl‘l3
y but also by a covariate that was measured on each subject prior to the study ’

Example 17.1 Effects of Exercise on Oxygen Ventilation

A - .
itycigThT:: ﬁhtmczl H'I]TthOd to evaluate an individual’s cardiovascular capac
gh treadmill exercise testing. One of th i -
ol ot maxing] . _ e measures obtained during
oxygen uptake, is considered the best i
- - ) e
woz'Ilfhcapacxty and maximal cardiovascular function ot ndex of
e i .
numberlg:z};l::z:is r?:;m;fl] o;:fgen uptake by an individual depends on a
. ) uding the mode of testing, test
e . n ) protocel, and the sub-
j physical condition and age. A common test protocol on tl,le treadmill is

t]le lIlC]llled pl OtOCO] Mh&le g! ade alld Spet’:d INCT e"le]ltal]y Increase u ||l eX-
. .

f:';srtelt:;firh Hypo:;!'r:sis: fResearchers in exercise physiology were of the opin
e conditions for treadmill testing should si i
sible the mode of subject cardi ' ini Tt e o P
lovascular training to attain thei i
" ' . eir maximal oxy-
E;t;p;fke ldur(;ng the t.est. .It was hypothesized that step aerobic training sz
mulated by the inclined protocol than a flat terrain running regimen

gt';:a:;i:;tithfs.igfﬁ Two treatments selected for the study were a 12-week
aining program and a 12-week outdoo i i
terrain. The subjects were to be te 1t bofore ond after the .
sted on a treadmill before and
Th _ ( e te: after the 12-
week training period with the inclined protocol. 1f the hypothesis were trf]ze
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the subjects from the step aerobic training would show greater increases in
maximal oxygen uptake than the subjects trained only on flat terrain. Those
trained on flat terrain might be limited by localized muscle fatigue when
tested on inclined protocols and thus not attain maximal oxygen uptake
before exhaustion.

Experiment Design: The subjects were 12 healthy males who did not partici-
pate in a regular exercise program. Six men were randomly assigned to each
group in a completely randomized design. Various respiratory measurements
were made on the subjects while on the treadmill before the 12-week period.
There were no differences in the respiratory measurements of the two groups
of subjects prior to treatment.

The measurement of interest for this example is the change in maximal
ventilation (liters/minute) of oxygen for the 12-week period. The observa-
tions on the 12 subjects and their ages are shown in Table 17.1, along with
the group means and standard errors.

Table 17.1  Maximal ventilation change (liters/minute) following a 12-week exer-

cise program
Group Age Change Group Age Change
Aerobic K1 17.05 Running 23 —0.87
. 23 4.96 22 ~ 10.74
27 10.40 22 —-327
28 11.05 25 —-1.97
22 026 27 7.50
24 2.51 20 —7.25
Mean 25.83 7.71 23.17 -2.77
Std. Err. 1.40 2.55 1.01 2.54

Source: D. Allen, Exercise Physiology, University of Arizona.

Is Treadmill Performance Related to Age?

A graph of the change in maximal ventilation (y) for each of the subjects with their
age (z) on the horizontal axis is shown in Figure 17.1. The plot suggests @
strong positive relationship between the age of the subjects and their change in
maximal ventilation on the treadmill regardless of the treatment group to which
they belong. Thus; there appears to be considerable experimental error variation
within each group associated with age differences.

The study protocol required the eligible subjects to be healthy males between
the ages of 20 and 35 with a sedentary lifestyle. Although the two groups of sub-
jects did not differ in their average pretest maximal ventilation measures, a onc-way
analysis of variance reveals a significant difference between the two groups in the
maximal ventilation change afier training. The aerobic exercise group had a larger
change in ventilation rate than the running group, but the aerobic group consists of

17.2
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Figure 17.1  The relationship between maxi ilati
. imal t : -
physiology study ventilation and age in the exercise

an older group of males. It must be determined whether the difference is a result of
Fh_e exercise or the age differences in the groups. That is, suppose the mean ch .

in ma.mmal vc?ntilation were compared at the same age for both groups Wou?c]; %hes
aerobic exercise group mean still be significantly greater than the rur;nin X
mean? .The analysis of covariance can be used to help answer that questim% fnrc(inip
deten:mne whether the relationship between maximal ventilation change and .
contributes significantly to experimental error variation. 8 e

Analysis of Covariance for Completely Randomized
Designs

The Linear Model and Analysis of Covariance

ghe‘ expe_rlment on exercise physiology was conducted in a completely randomized
esign with two treatment groups. Assuming a linear relationship between the re-

m I fol the com letel ral 5
I‘ld()mlz d

Yii = pi + Pxi; — )+ ey (17.1)

i=1,2,...,¢ §=12..r

where u; is the treatment mean, 3 is the coefficient for the linear regression of y;;
.. ¥ 1 H :
on z;;, and the e;; are independent, normally distributed random experimentajl
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errors with mean 0 and variance o2, Two additional key assumptions for this model
are that the regression coefficient § is the same for all treatment groups, and the
treatments do not influence the covariate z.

The first objective of the covariance analysis is to determine whether the addi-
tion of the covariate has reduced the estimate of experimental error variance. If the
reduction is significant, then we obtain estimates of the treatment group means ;,
adjusted to the same value of the covariate z for each of the treatment groups and
determine the significance of treatment differences on the basis of the adjusted
treatment means.

Alternative Models to Evaluate the Covariate Contribution
The analysis will require least squares estimates of the parameters for the alterna-
tive full and reduced models, which are

o the full model 4 = i + Blzy — T+ e

o areduced model without the covariate y;; = i + €i;

o areduced model without treatment effects yi; = p + Bl — T} + e

The reduced model without the covariate is required to assess the influence of
the covariate, and the reduced model without the treatment effects is required to as-

sess the significance of treatment effects in the presence of the covariate.
Least squares estimates of the parameters are derived for the full model to

obtain
SSE; = Slyy — B — Blei — £
with N — t — 1 dégrees of freedom; the reduced model without the covariate for
SSE, =T (y; — A’

with N — ¢ degrees of freedom; and the reduced model without treatment effects
for

SSE? = Ty — it — Bz — 7))

with N — 2 degrees of freedom.
The sum of squares reduction due to the addition of the covariate z to the mod-
el is obtained as the difference

S5(Covariate) = SSE, — S5 Ly

with 1 degree of freedom. The adjusted treatment sum of squares after fitting the
covariate is
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55T (adjusted) = SSE; ~ SSE;
with ¢ — 1 degrees of freedom.

The SSE for each of the three models fit to th i i
e exercise ph
(Table 17.1) are SSE; = 70.39, SSE, = 389.30, and SSE* =eI4pZ }I’ZIOIOgY da

Sum of Squares Partitions for the Analysis of Covariance

These sum of squares reductions can be computed b

for the analysis of covariance, and they will prodfce the 1?;;:1?:;; (i)rrlrflgrl:::t}:)rl? %‘mm;
in the following discussion. The sum of squares partitions for the change in n(lmn'

mal ventilation rate with the age covariate in the exercise physiﬂlog studaxil-
shown in the analysis of variance in Table 17.2. Notice without the agg co\.'ar);atS
the estimated experimental error variance is MSE, = §S5E %(N - ) —e
389.3/10 = 38.93. The addition of the covariate has red:med ther estimate :0
MSE =782 in Table 17.2. Thus, use of the age covariate as local control to re-

duce o? through covariates a i in i
: ppears to be effective. The gain in efficienc
covariate is illustrated later in this section, Y duetothe

Tal?le 1.7.2 Analysis of covariance for maximal ventilation change with age co-
variate in an exercise physiology study

Source of  Degreesof  Sum of Mean

Variation Freedom Squares Square F Pr>F
Regression 1 318.91 318.901" 40.78 .000
Group 1 71.79 71.79% 9.18 014
Error 5 70.39 7.82¢

*MS§(Covariate) TMST(adjusted) *MSE,

Tests of Hypotheses About Covariates and Treatments

Determine th.e significance of the reduction due to the covariate with a test of
the null hypothesis Hy: 3 = 0. The test statistic is

_ MS(Covariate)  318.91

F J—
b e = gy =078 (17.2)

with c.;ritical value Flgs19 = 3.12, The null hypothesis is rejected with Pr > F =
000 in Table 17.2; the addition of the covariate has significantly reduced experi-
mental error variance.

The significant relationship between change in maximal ventilation rate and
age of the subjects indicates the necessity to assess the significance of the treatment
effects after the covariance adjustment. The null hypothesis for the adjusted treat-
ment means is Hy: gy = po, and the test statistic is
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ST(adjusted)  71.79
_ MST(adjusted) _ —9.18 (17.3)

0 MSE 7.82

with critical value Fgs 19 = 5.12. The null hypothesis is rejected with Pr > =
0.014 in Table 17.2, and we conclude that treatment means adjusted for age are

different.

Treatment Means Adjusted to a Common Covariate Value

The estimates of the treatment means are adjusted to a common value for the covar-
iate if inclusion of the covariate in the model significantly reduced experimental er-
ror variance. The treatment means can be adjusted to any value of the covariate, but
ordinarily they are adjusted to the overall mean T _ as

Vi = T — B — T) (17.4)

The estimate of the regression coefficient, which most programs compute auto-
matically, is

t
=

> (i~ i )i — i) _ 16910 ees (17.5)
~ 8967 .

Ly

ﬁ:

1
i

NngR

(mij - E‘i.)2
o

i=1

and the estimated regression equation for the zth treatment group will be
B =T, + Blai — F) (17.6)
and are

gy, =770+ 1.886(z1; — 25.83)

for the aerobic group and

oy = — 2.77 + 1.886(zz; —23.17)

for the running group. The regression line for each of the treatment groups is shown

in Figure 17.2.
The treatment means adjusted to the mean age = = 24.5 are

Ty = 7.70 — 1.886(25.83 — 24.5) = 5.19
B, = — 277 — 1.886(23.17 —24.5) = — 0.26

The unadjusted and adjusted treatment means are shown with the computed regres-
sion line for each of the treatment groups in Figure 172,
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Figure 17.2 Regression between maximal ventilati i
- _ entilation and age in th i
physiology study with adjusted treatment means ¢ e e

The difference between the unadjusted treatment means ¥, — 7%, =
7.71 —{ — 2.77) = 10.48 was much greater than the difference betweenllthethrée;[-
ment means adjusted to a common age, ¥4 — Fou = 5.19 — ( — 0.26) = 5.45, Part
of the dlffere‘nce between the unadjusted means was due to the difference- of. ovaer
two years in the average ages of the subjects in the two treatment
groups,fl_ = 25.83 and 5, = 23.17. The adjusted means are estimates of the mean
maximal ventilation change at a common age. Thus, the difference between the ad-

Standard Errors for the Adjusted Treatment Means

. Two quantities useful for calculation of standard errors and relative efficienc
in t.he analysis of covariance are the sums of squares for treatments, T}, and ex)j
perimental error, E.. from an analysis of variance for the age covar’iateﬂ;r These
sums of squares and their values for this study are o

i
Toe =7 (&~ ) =213

i=1
and

T

Fr = Z Z(Iij - E{.)z = 89.67

t
i=1 ;=1
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The standard error estimator for an adjusted treatment mean is

1 @ -z
sq. = \/JT/ISE [; L&) — z.) ] (17.7)

The estimated standard error for the adjusted aerobic exercise group mean is

1 (2583 —24.50)2
1t ——— = 121
Y 82 [6 T TR9.67

The standard error estimate for the adjusted running group mean will be the same
as that for the exercise group mean since the quantity (Z; — #_)* in Equation (17.7)

is the same for both treatment groups.
The standard error estimator for the difference between two adjusted treatment

means is not always available from computer programs without some clever pro-
gramming on the part of the user. It is calculated as

11 (@ = E)
Sa-v) = || MSE L—i + y + —*—E:?—] (17.8)

The difference between the adjusted treatment means for the aerobic exercise and
runniing groups is ¥, — Vou = 5.19 — ( — 0.26) = 545 with standard error estimalte

1 1 (25.83-23.17)
Spa-w = 4| T2 e e T T w067 | 1.80

Even when all r; are equal, the standard error of the difference will vary among the
pairs of treatments with more than two treatment groups because of the term
(T;. — T;) in Equation (17.8). Tn practice the variation in the estimate is slight. A
single average standard error of the difference suggested by Finney (1946) to sim-
plify the analysis with equal replication numbers is

IMSE | Tz
oy = L 7.
55,50 =1 {1+ (t_l)Em] (17.9)

The substitution of Ty, for(Z: - % )¢ in Equation (17.7) provides the average
standard error for the adjusted treatment means.

Was There Increased Efficiency with a Covariate?

Whether the covariance adjustment has been worth the required effort depends on
the gain in efficiency of the estimated means. The efficiency of the covariance ad-
justment relative to the analysis without the adjustment is based on the ratio of re-
spective variances for the estimates of treatment means. The estimate of
experimental erTor variance from the reduced model without the covariate is
MSE, = S8SE./(N—-1)= 389.3/10 = 38.93. The average variance suggested by

- .
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I 94 Stlmate i
]th the covariance ad ustment. The

MSE,

E:
MSE [l-;—

T (17.10)

G1ve‘n MSE, =3893, T, =21.33,F,, =89.67, MSE =782, and t =

efﬁcu?ncy of the covariance adjustment is F = 3%.93 /9 65 —.46 a';‘]h t “-:? o
covariance adjustment for age, four times as many subje:;ts “-f;ulld.be . w‘gl(;Ut
the exercise study to achieve the same precision on the estimated UeathZ?l$:ansor

Critical Assumptions for a Valid Covariance Analysis

The validity of inferences from the analysis of variance requires an a i
mde-pe.ndent and hpmogen_eous nermally distributed errors. An evaluat?cs;;rgfpttlho: a{;f
zumplt)lons rf.:gardmg‘homogene.ous and normally distributed experimental errors
Aan e actlleveci with an estimate of the residuals for each observation as
fﬁj = yg ¥;. — B(zi; — 7). Many computer programs will supply estimates of
e residuals that can be used for the normal plots and plots of residual i
mated values to evaluate the assumptions as outlined in Chapter 4 et
Add_ltmnal assumptions critical to the validity of inferenceslfrom th lysi
of covariance are (1) the covariate z is unaffected by the treatments (2e a“? ear
relatlc_m'shlp exists between the response variable y and the covariate : )da ) the
regression coefficient 3 is the same for all treatment groups. 7 mnd () the

Do the Treatments Affect the Covariate?

trean]:: ;}11::5 ct:]n::arr;:ltﬁtamn?sr :vell as t.he prin.1ar)f response variable y is affected by the
ulta sponse is multivariate, and the covariance adjustment for

treatment means is inappropriate. In these cases, an analysis of the bivariat
sponse (m,'y) utilizing multivariate analysis methods is in order Adjustmefl?? : tl:-
covariate is appropriate if it is measured prior to treatment adm-inistration sin(?; th:
t;z;t;nen;s have not yet l'llad the opportunity.to affect its value. If the covariate is
ured concurrently with the response variable, then it must be decided whether

it could be affected by the treatmen i j
fr could b Y ts before the covariance adjustments are

Is the Regression Coefficient the Same for All Treatinenis?

| C?mparisons among adjusted treatment means are independent of the covariate
;a ue if the regression Iines for the treatment groups are paraliel. If the relationship
die;fv;::n Y al:d T dlffeés among the treatment groups as shown in Figure 17.3, then
nces between adjusted treatment means de i 4
' pend crucially o

chosen for the adjustment.  on the level of =
This _heteroggneity of regression coefficients among treatment groups
resembles interaction between factors in the standard factorial treatment design. In
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Figure 17.3 Differing regression relationships between the response variable y

and the covariate «

that case comparisons are made with simple effects of one factor at each level of
other factors. A similar strategy must be used in the case of continuous covariates
with different regression coefficients for the treatment groups.

Similar difficulties occur with nonlinear relationships. Under these circum-
stances the inferences regarding the responses must include a complete description
involving the effects of the treatments and the covariate.

Evaluation of the Separate Regressions Model

The Linear Model with Separate Regressions for Each Treatment
The linear model with different regression coefficients for each of the treat-

ment groups is
yi; = pti + By — Ti) + € (17.11)

i=1,2,..,t j=1,2,...,7

is the regression coefficient for the ith treatment group. A test for the

where 5;
-« = B, can be derived

equality of the regression coefficients, Hy: ==
from an analysis of the two alternative models, the model with a common regres-

sion for all treatments and the model with separate regressions for the treatments.
Different regressions imply the presence of an interaction between the treatments
and the covariate; thus, the model alternatively can be written to include a term for

interaction between the covariate and treatments.
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xample 17.2 Auditory Discrimination and Cultural Envj "
vironmen

Hendrix, Carter, and Scott (1982) described
t . : it . a study cond i
Sl;zﬂtﬂi‘far;gcre Smez}tlt: ability to discriminate aurally betw:zrtleintsi:j:;fnr:x;
ounds n-eaml;m ) sev!eral fa.ctor.s. TFhe study was designed to test the ef-
s o a freat rouon audltor)./ discrimination, Subjects belonging to two dif-
ferent cultural groups were given pre-treatment and post-tre

ry discrimination. ment tests on

Only a portion of the data is used for this exam i
gz }lz'f;zﬁf:;c;gs dregres§i0n coefficients for the colilzr:;)t:h”llfhtza;eng;e ‘-effec‘tlsl‘
e o ot tetermme lw_hethe.r the gain in auditory score betv?r,:ls ‘:'111
pre- and post c?, ‘rine'nt administration differed between the subjects Wit‘;lrl :
o seares : ariate. The data for gain in scores and pre-test P
jects in the auditory treatment group are shown in TableS c;;r;s from

[ﬂhle 1 ;.3 PHE'teSt and ga"i scores I(' au(l tor y ([] Cr
C n

Culture Pre-Test 7
: - Gc;rn Cu!zture Prej-;"est Gain
39 32 50 ;
69 2 59 P
56 20 42 :
67 4 62 "
39 26 35 ;
32 34 41 .
62 8 3 g
64 4
66 2 21 :
Mean 55.8 13.6 47.8 668

A Sum of Squares Partition Jor Homogeneity of Regressions

Let the model y;; = pu; fod
ij = i + B(xi; — T.) -+ e;; in Equati
: i . i quation (17, i
;::)r;lmon slc_)fe, be model 1 with the usual ¢ + 1 }J)arameters i a(nd ,é)’instlt]i?mgda
i = il L — T i i ine \ o for
eaCthrea;,tL:nen?,%i,,mo éz:l);- ef:-lllrzltEquatlon (17.11), assuming different slopes (;or
; ) wi parameters, y; and ;. Th
¢ st ;. The sum of
ﬁ)g::lr‘;ﬁelzlt:é ::lll'ror from model 1, say SSE;, will have N—-t-1 Sdcg:zss fg;
e , e sum of squares for experimental error from model 2 58
wi Tive (N — 2t) degrees of freedom. S S
_— 1e7 jngi)};]stl:inf;f Svgl:;_:?nce;]fg thg auditory discrimination data for model 1 in
- . 1 = 5319.38 with 17 degrees of freedom. Th i
. - : e
z?r;:ﬁc;:ezor rcrllod?l 2 is shown in Table 17.5 with 2 degrees of freedom f%?atges ]:u(r)nf
reduction for separate regressions calculated within each culture group
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The error sum of squares has been reduced to SSE, = 147.22 with 16 degrees of
freedom.

Table 17.4 Analysis of covariance for score gain with pre-test score covariate in
the auditory discrimination study

Source of  Degreesof ~ Sum of Mean
Variation Freedom Squares Square F Pr>F
Regression I 1061.12 1061.12 34,73 .000
Group 1 647.47 647.47 21.19 000
Error 17 519.38" 30.55

*SSEy '

Table 17.5 Analysis of covariance score gain assuming separate regressions of
gain on pre-test scores for each cultural group

Source of Degrees of Sumof — Mean :
Variation Freedom  Sguares  Square F Pr>F
Group 1 61024 61024 6633 000
Regression within groups 2 143328 716.64 77.89 000
Etror 16 147.22* 9.20
*SS5Ey '

The sum of squares to test homogeneity of regression coefficients for the treat-
ment groups is the difference in the experimental error sum of squares for the two

models or
S S(Homogeneity) = SSEy — S5S5E, (17.12)
=519.38 — 147.22
=372.16

with(N —t— 1) — (N —-2i) = (t—Dorl17-16=1 degrees of freedom. The Fy
statistic to test the null hypothesis of equal regression coefficients, Hp:
ﬁ1=ﬁ2="'=ﬁni5
M S(Homogeneity)
= 7.13
D MSE, (17.13)

with critical value Fpg_1).(v-2) The test for the exercise study is =
(372.16/1)/9.20 = 40.45 exceeds Fos 115 = 449, and the null hypothesis of equal

regression coefficients for the two cultural groups is rejected. The regression of

gain in score on pre-test scores is different for the two cultural groups, and adjust-
ment of the cultural group means to the same pre-test score with a common regres-

sion is not appropriate.
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Many statistical programs are capable of direct] i
. y compu i
;J;'esc?gzge:Sf:rtr};gr’:;i::r;mty of r.egreission c.oefﬁcients ianf:;EEtitgs I;f;c;uir;)d‘iims
specified as 1 frea cKwar-y covariate mferactlon effect in the program. Th-e anal s
of sariance for the 1ance model with a treatment by covariate interacti o
e 17.6. Note the sum of squares for the Groups % Regrer::;ti;n'tetm
inter-

action is equivalent to the sum of
- ! squares for homo i i
rived from the alternative models with common ange;i?}Z;Equatmn (17.12), de-

treatment groups. nt regressions for the

Table 17.6 i .
tween th Analysis of covariance for score gain, including the j ;
n the pre-test score covariate and cultural groups g the interaction be-

ffow"ce- of Degrees of  Sum of Mean
Gcrz::zt:on Freedom  Squares  Square F Pr>F
¥
oo :SSion 1 610.24 610.24 66.32 .000
Ree . 1 770.63 770,63 - 83.75 0
o ups x Regression 1 37216 37216 40.45 200
rror 16 147.22 9.20 . 0

A Regression Coefficient Estimate for Each Treatment

If the regressions are signi i
significantly different amon
- _ ' . g the treatment gro
cl;ltede; estimate of the regression coefficient for the ith treatmen% o ﬂ'le ot
p rom the ;; and y;; values within the treatment group as SOtp s conr

3 - gl(“’fi — Zi )y — Ti)
Zr: (s — 7o) (17.14)

i=1

I‘hi fstlmated regression equation for the ith treatment group is
| oA . 1S .=
yLou ﬂl(mz :?l_). The estimates of the regression coefficients for the two cu?t:.lral
groups and their standard errors (in parentheses) are ﬁl = —0.91(0.07) and B

. . 9 =

— 0.16(0.09). Both of th i
: .09). esc estimates are available fi
01600 : able from computer programs
near | -e]s. The standard error estimate for the estimated regreisi(;gr: c:oe;:f9 :
cient, f3;, is the square root of MSE/Y " (w;; — T; )2 "
. . - 3= ’ - ’
The estimated regression equations for the two cultural groups are

Group1: 3, =558 —091(x ~ 13.6)

Group2: P, =47.8—0.16(z — 6.8)

The = . . -
The sflrteuis;;an equations are plotted in Figure 17.4 along with the observations for
group. Clearly, the regression lines are different from one another and




s

a comparison of cultural group :
7 = 51.8 would be relatively meaningless.
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means adjusted to the overall pre-test mean of

Gain in score

Pre-test score

. . e
Figure 17.4 Regression between gain in score and pre-test scores with separa

regressions for cultural groups

Rather, consider the regression lines as estima_tes of the sim];lle %ffeizt ;)rf 11;1;;;
test scores ;t each level of cultural group and rpakeI jinferences on that aém. o ot
cultural groups the gain in score decreased with hlghca(ri prf:-t;stI SCFI::; o e St

i { than with Group 2. In Ia
ease was much greater with Group .
gir?fctrtest for Hy: o =01isto= — (.16/0.09 = — 1.7?, which 'would‘le(;iattc;
nonrejection of the null hypothesis; so no convincing evidence exists to in
i i 2.
i1 changes with pre-test scores in Group . r
= It is i'ident th];t the gain in scores from treatment m-Groupdl aree?rmt:(l: %;ag;t
j initi i discrimination and app
the subjects had low initial auditory nation ear nefit
:11:1?:11]1 more frim training than do those in Group 2 with similar low initial auditory

discrimination, When subjects from either group had high initial auditory

i ini i low or
discrimination on the pre-test the gain from training was relatively

negligible.
Confidence intervals or tests of hypotheses between

for any given value of pretest score = T, 52Y > Yijz — Y2lan®
with the variance of the contrast as

11 (@ — T {To — 53)2 2] (17.15)
STy MSE [H PR T TR HENE Y

the estimated group means
can be constructed
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17.3  The Analysis of Covariance for Blocked Experiment
Designs

The analysis of covariance can be applied to any experimental design with a
straightforward extension of the principles applied to the completely randomized
design in the previous section. However, a test for equality of regression coeffi-
cients among treatment groups is not possible with blocked designs unless there is
more than one experimental unit for each treatment within each block. The analysis
is illustrated with a randomized complete block design.

Example 17.3 Nutrient Availability Tests with Barley
in the Greenhouse

Management methods on forest and range watersheds affect the nutrient sta-
tus and availability of nutrients in any vegetation and soil-type complex.
Knowledge of the soil, plant, and nutrient relationships is essential to proper-
ly manage watershed vegetation and soils.

The availability of certain soil nutrients in these watershed soils is evalu-
ated by a pot culture technique in a greenhouse with barley plants. In princi-
ple, the method is based on the law of limiting factors. The test plants are
grown in the soil fertilized to an optimum level and in the soil fertilized in
identical fashion but without the nutrient in question. If the nutrient is defi-
cient in the soil, the plants cultured in the complete nutrient soil will exhibit

more plant growth than those cultured in the soil with the nutrient omitted
from the fertilizer.

Research Objective: In one such study an investigator wanted to determine
the availability of nitrogen and phosphorus in a watershed dominated by
chaparral vegetation. He had collected soil samples from under the canopies
of the dominant vegetation in the watershed, mountain mahogany, and com-

posited the samples for a pot culture evaluation of nitrogen and phosphorus
availability.

Treatment Design: Four nutrient treatments used for the study were (1)
check, no fertilizer added; (2) full, a complete fertilizer; (3) Np, nitrogen
omitted from full, and (4) Py, phosphorus omitted from full. The nutrient
treatments were added as solutions to the soil, mixed, and placed in plastic
pots in the greenhouse.

Experimental Design: The treatment pots were arranged on a greenhouse
bench in a randomized complete block design to control experimental error
variation caused by gradients in light and temperature in the greenhouse.

The barley plants were grown in the pots for seven weeks when plants
were harvested, dried, and weighed. A leaf blight infected the plants part way
through the experiment. it was assumed the blight would affect the growth of
the plants and at the end of the experiment the percentage of the leaf area
affected by the blight was measured in each container before the barley plants




e
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were harvested. The total dry weight of the barley plants and the percent leaf
area affected with the blight is shown in Table 17.7 for each container in the
experiment.

Table 17.7 Total dry matter ¥ in grams and percent blighted leaf area x of barley
plants

Treatment
Check Full NU P[)

Block y T Y x Y T y x

1 231 13 30.1 7 264 10 262 8

2 209 12 318 5 272 9 253 9

3 28.3 7 324 6 286 6 297 7

4 25.0 9 306 7 285 6 26.0 1

5 25.1 8 275 9 308 3 249 9
Mean 2448 9.8 3048 6.8 283 7.2 2642 8.0

Source: Dr. L. Klemmedson, Renewable Matural Resources, University of Arizona.

The Linear Model for a Randomized Complete Block Design
The effects model for the randomized complete block design can be expressed as
Yij = M +7r+pit Bz — T+ ey (17.15)

i=1.2,.,t d=120,7

where p is the general mean, T is the treatment effect, p; is the block effect, § is
the regression of y on %, and the e;; are independent and normally distributed ran-
dom errors with mean 0 and variance o”. It is further assumed that the covariate is
unaffected by the treatments or blocks and the regression is the same for all
treatments.

Alternative Models to Evaluate the Covariate Influence

Alternative full and reduced models are used to evaluate the influence of the covar-
iate and also the significance of the ireatment effects after adjustment for the co-
variate if necessary. The required models and their experimental error sums of
squares are ’

. o the full model, vij=p+Ti+p; + Blzi; — T2+ & and SSE; with
r-DE-n-1 degrees of freedom

» the usual randomized complete block model with no covariate, Yi; =
p+ 7+ p; t € and SSE, with (r — 1) — 1) degrees of freedom
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s no treatment effects, y; =
> 1._7*—[L‘f‘,0'+ i — .. .
(N —r — 1) degrees of freedom i+ A@i; = T} + ey, and SSET with

Finally, although not entirel
& y necessary for th i .
squares for blocks can be computed using the mOdeeIavr:‘?tlﬁ/sm, the adjusted sum of

e no block effects, y;; =
4 ’ i = M + Ti + i — T .. .
(N —t— 1) degrees ijﬁ‘eedom Plei; = T.) + ey, and SSEr with

The SSE for each of the mod
¢ els fit to the barley d
SSE; = 12.577, SSE, = 39.167, SSE* = 37.437, and s —T;glgey'?’ "

Sum of Squares Partitions for the Analysis of Covariance

The sum of squares reducti i
ction upon adding the covari
complete block model is obtained as the difference e to the usual randomized

§5(Covariate} = SSE, — SSE;
=39.167 — 12.577 = 26.590

1 . 1

S85T (adjusted) = SSE; — SSE;
= 37437 — 12.577 = 24.860

with (¢ — 1) = 3 degrees of freed j
. om. The ad
ting the covariate and treatment effects is weusted Dlock sum of squares ufer fit

55B(adjusted) = SSE™ — §SE;
=20.363 — 12.577 = 7.786

The analysis of covariance fi i
or th Aahily .
Table 17.8. r the nutrient availability test with barley is shown in

The significance of the covari i
ariate re .
ﬁ = () with the statistic quires a test of the null hyPOtheSIS H(]:
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Table 17.8 Analysis of covariance for dry matter production of barley plants with

percent blight damaged leaf area as a covariate

Source of  Degrees of ~ Sum of Mean

Variation Freedom Squares Square F Pr>F
Regression ] 26.590 26.590 23.263 0.001
Block 4 7.786 1.947 1.703 0219
Treatment 3 24.860 8287 7250 0.006
Error 11 12.577 1.143

M S(Covariate) _ 26.590
¢ MSE 1.143 23.263

plants is significant.

plant. .

the statistic

M 5T(adjust 8.287
_ ST (adjusted) _ _ 725

B MSE 1.14

(§3 )

Adjusted Treatment Means and Their Standard Errors

Interpretations with Multiple Contrasts

and the null hypothesis is rejected with Pr > F = .006 in Table 17.8.

The one-sided Dunnett 95% simultaneous confidence wiih the “Full”
control ¢an be used fo determine whether the soil was deficient in nutrients. The

which is significant with Pr > F = 001 in Table 17.8. Thus, the relationship be-
tween the percent blight damaged leaf area and dry matter production of the barley

The estimate of the regression coefficient, which will be provided by most
computer programs, is B = —0.863. The negative coefficient indicates the dry
matter production decreases with an increase in the incidence of the disease on the

The null hypothesis of no differences among the treatment means is tested with

The adjusted treatment means are calculated the same as for the completely ran-
domized design with Equation (17.4) and are shown in Table 17.9 along with their
standard errors. The standard errors shown in Equations (17.7) and {(17.9) can be
used for the adjusted treatment means with the sums of squares for treat-
ments, Ty, = 26.55, and error, By = 35.70, from the analysis of variance for the
covariate, blight infection, using the data in Table 17.7. The estimated average stan-
dard error of the difference between two adjusted treatment means is

2(1.143) 26.55
=y —— ) =076
S{Fa—Ta) \f 3 {1 + (3)35_7] 7

(17.16)

treatment as a

17.
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Table 17.9 Adjusted means and their standard errors from the analysis of covari
dari-

€ a]]ts W ]l Crce i

Adjusted
Treatment l\i’ e a; Standard
E
ghle‘:k 26.08 OT;;’"
N“ I 29.49 05
o a 27.65 0.50
0 26.46 0' 43

;(:; Eec:tzrf;llmetnt (iif ft-he.j plant grown in the control or Full treatment exceeds that for
ents deficient in one or more of the nutri : i
bound of the interval for treatm ' et e b oreT
‘ ent mi i i i
bound of the ni nus control is negative the treatment is defi-
Side;{'oin A;l)pendix Table VI the critical value of the Dunnett statistic for a one-
interval is dgs311 = 2.31. The Dunnett criterion is D(3, .05) = 2.31(0.76) =

1.76. The 95% SCI upper bounds for di
r differe
control, Full, treatment are shown in Table I?.rll;:).eS petween the treaments and the

Tabl i
Din nettl'f.lﬂh Upper bounds 25% simultancous confidence intervals using the
ett method to compare the control treatment, Full, to other treatments -

Adjusted
Treatment _ L 95% SCI
Check MS?S?") (yi; ; f) Ypper Bounds
Full 7o = 29.49 _ - 163
E” 27.65 — 1.84 —0.08
0 26.46 -3.03 127

Cont;[;r]letrdlfferenc'e between the Check treatment with no added nutrients and the
control deatm;nt is 2§.08 —28.29 = — 3.41 with an upper bound, — 1.65,0n the
one 1S peec icfontldfncf:e 1gtefrval. Thus, the soil is deficient in some unspeciﬁeél nutri
. ic tests for deficiencies in nitrogen and phosph i A
sons between the full treatment and th b eatmome e e
e Np and Pytreatments. The di
between the nitrogen deficient ; ol rosment
treatment Ny and th i
beteer nitro; f 0 ¢ control treatment
> 65h 29.49 1..84 with an upper bound of — 0.08, The difference betweelr?
_e;hp osphorus deficient treatment Py and the control is 26.46 — 2949 = — 3.03
::d :;ln u;;lper bound of — 1.27. Although the soil was deficient in both nitroée;
phosphorous, the upper bound for the phosphorous comparison was much far

ther removed from 0 than that fo i
r : r the nitrogen comparis indicati
deficiency in phosphorous than in nitrogen. ¢ parison. indicating a greate
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417.4 Practical Consequences of Covariance Analysis

Practical application of the analysis of covariance has been demonstrated only with
completely randomized and randomized complete block designs. However, the use
of covariates can be extended to any treatment and experiment design as well as to
comparative observational studies of complex structure and studies requiring the
use of multiple covariates for adjustment. The objective in this chapter was to intro-
duce the basic ideas underlying the use of additional information on basic units of
the study. The specific manual formulae for the analysis will depend on the specific
treatment and experiment design employed for the study. However, in all cases the
use of full and reduced models, as illustrated with the two designs in this chapter,
will enable an assessment of the covariates influence on the reduction of experi-
mental error and the significance of adjusted treatment means.

Extensive discussions on the uses and misuses of covariates in research studies
were provided in two special issues of Biometrics {1957), Volume 13, No. 3 and
(1982), Volume 38, No. 3. Of particular interest are articles by Cochran (1957),
Smith (1957), and Cox and McCullagh (1982). A number of issues arise relevant to
the use of covariates. Among those concerns are the applicability in certain situa-
tions and the relationship between blocking and covariates.

Analysis of Covariance Combines the Features of Two Models

The analysis of covariance combines the features of models for the analysis of vari-
ance and regression to partition the total variation into components ascribable to (1)
the treatment effects, {2) the effects attributable to any covariates, and (3) random
experimental error as well as the variation associated with any design blocking fac-
tors. The basic intention is to compare treatments at a common value for the
covariate,

When Covariates Are Superior to Blocks for Error Control

On the surface, covariance analysis appears to offer an alternative to blocking for
reducing experimental error. Blocking designs restrict the number of criteria that
reasonably can be used for local control. On the other hand, covariance permits the
use of any number of factors thought necessary. Covariance also makes better use
of exact values for quantitative factors, whereas blocking groups the same fac-
tors into classes of values. The advantage of covariates seems great when there
are more than a few factors available as potential candidates for blocking variables.

When Blocks Are Superior to Covariates for Error Control

Covariance may be at a distinct disadvantage without blocking because random
allocation of treatments to experimental units can resuit in an uneven distribution of
treatments among the covariate classes. Any association between the covariate and
the treatments confounds the effects of both on the response variable. Blocking on
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the values of the covariates distributes the treatments evenly among th i
classes am? avoids confounding the effects of the treatments and covagri te sovarite
lB_lockmg is most effective with qualitative factors that produce ?::S- izabl
vana?non among the experimental units. These factors include stud m:‘)gmza y
sractlcgs w::en tasks have to be performed by several technicians gr onndaigf;g::z:
avs, . . .
cri);esrja_ atches of raw materials provide natural effective qualitative blocking
Whenever the systematic differences are highly recognizable blocking i
most effective means of reducing experimental error variation that m(;': tm'g 'the
orthogonality required to avoid confounding the effects of the covariat 3 al}:ﬁ e
trea.tments. In summary, blocking is recommended as a first course to E:rs (;’V oo o
pe_nmental error variance with adjustments on additional information if coossory
with the analysis of covariance to further improve precision, ey

Comparative Observational Studies at a Disadvantage

’lh_e analysis of comparative observational studies can benefit equally from a |
ysis that includes covariates to reduce error variance and adjust grou me:;1 an? :
differences in their covariate values, Observational studies suffer fl‘OI‘Fl the ES .gr
vgr.ltage t_hat units cannot be randomized to the defined treatment groups. The s
bility exists for an influence on the response by additional unobserveci covai(i):tse:-
fhat are associated with the treatment groups, thus introducing an unknown bi .
into the group comparisons. Experimental studies have the advantage that the E;'S
‘fects of th.ese variables are distributed among the units by randomization and thei;
influence is much less likely to be confounded with the effects of the treatments )

" The Dangers of Extrapolation Beyond the Data

Finally, caution must be used when treatment means are adjusted to a common val-
ue .for the covariate. Even though the regressions are paralle] and there is no possi-
bll‘]ty tl‘1at the treatments affect the covariate, the values of the covariate chlJld be
quite different for the treatment groups, If the covariate values are widely separated
for the treatrpent groups, then adjustments would have to be extrapolated to a value
f’f the Cf)varlate that is not common to either of the groups. An extreme example for
1llu§trat10n is a situation where income is used as a covariate for adjustment in com-
paring a group of corporate executives to entry-level clerical workers. Clearly

there would be no overlap of the income levels for the two groups. The a;ijustmen;
would apply to the extrapolated region of an average income not included in either
group and a comparison would be made between two groups in a nonsense setting.

Even if the extrapolated adjustments were valid the standard errors of extrapolated
values would be quite large.
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EXERCISES FOR CHAPTER 17

1.  An experimenti wa
welds were made on each of the al
diameter of the weld was measured because it was believed that the
fected by its diameter. The data are shown in the table where y =

s conducted on the shear strength of spot welds for three types of steel alloy. Six
loys and the force required to shear the weld was measured. The
strength of the weld was af-
weld strength and € = weld

diameter.
Alloy ¥ x Alloy ¥ x Alloy ¥ x
i 37.5 125 2 575 165 3 38.0 155
1 40,5 14.0 2 69.5 175 3 445 16.0
1 49.0 16.0 2 27.0 190 3 53.0 190
1 51.0 150 2 92.0 195 3 550 18.0
1 615 18.0 2 107.0 240 3 58.5 15.0
i 63.0 195 2 119.5 22.5 3 600 205

T e

i.  Suppose you subscribe to the philosophy of a signific

Use weld diameter as a covariate for weld strength, and write a linear model for the experi-
ment, identify each of the terms in the model, and state the assumptions for the model.
Conduct the analysis of covariance, and test the significance of the covariate and adjusted
treatment means.

Compute the adjusted treatment means, their standard errors, and a
the difference between two adjusted means.

Plot the regression line for cach alloy showing the obs
each alloy.

Compute the efficiency of the covariance adjustment.
Test the hypothesis of homogeneous regressions for each of the alloys.

Discuss the results of the experiment and the effectiveness of the covariance adjustment.

The significance level of the test for homogeneous regressions was Pr > F = 068, When the
source of variation for Group X Regression is not significant we end up with the sum of
squares for error in the regular analysis of covariance assuming homogeneous regression
coefficient. Effectively we are pooling the Group x Regression sum of squares partition with
the sum of squares for error from the analysis of covariance for the model with separate re-
gression coefficients for each treatment group- Hendrix et al. (1982) suggested in that case we
should use a significance Jevel of o = .20 or .25 since it was similar to the problem of testing
incompletely specified models as discussed by Bozivich, Bancroft, and Hartley (1956). What

do you think about this strategy?

n average standard error of

erved means and adjusted means for

ance leve! of & = .20 or .25 when testing

the null hypothesis of equal regression coefficients for all treatment groups. The null hy-
pothesis in part (f) is then rejected. Conduct the analysis of covariance with separate regression
estimates for each treatment group, and compute the estimated regression coefficients and their
standard errors for each alloy. What is your inference from the study at this point?

an experiment to evaluate the effects of four vitamin supplements

A nutrition scientist conducted
was conducted in a completely

on the weight gain of laboratory animals. The experiment

EXERCISES 573

randomized desi i : ‘
diffor among Z;liirllaruth fye separate]y_ caged animals for each treatment. The caloric i i
s and influence weight gain so the investigator measu'red the calr(lJC'mFai(iWIl':‘
ric intake o

each animal. The data on weight gai = i
cach e ght gain (y = grams) and calorie intake {z = calories/10) are shown

Diet y «x Diet
y ox Diet y x Di
i 48 35 2 65 40 3 79 51 fl o
! g; j: 2 49 45 3 52 41 4 §3 zg
2 37 3 3 63
47 4
i 69 51 2 73 53 3 65 47 4 o
53 47 2 63 42 3 67 48 4 ii i;
a. Determine whether diet influenc ie
ed calor
Determine whether ie intake to the extent that the latter would be invali-
b. Use calorie intake as a covari i
riate for weight gain, and write a li
. . , ali i
. gi;:éﬁte?hch of t:]c .terms in the model, and state the assumptior:;e?(:rn:l?ed::grlthe erperiment
. e analysis of covarianc igni o
conduct ihe anz e, and test the significance of the covariate and adjusted
d.

Compute the adjusted tr
[ eatment means, their standard err
the difference between two adjusted means. o end an average standard error of

Pl()t the I’egreSSlOIl lllle f g ]]e ()bSC[ 'ved means a“(l a(ll lSIE(l means IH] ea(',h
or eac et OWLI t

f. (;ompute the efficiency of the covariance adjustment
D?:z :,l;: t}lllypoth'esm of homogeneous regressions for each of the diets
e results of the experiment and the effectiveness of the covlariance adjustment

A plant scientist conducted an experiment to stud

A plant s¢ . ] y the effects of drip irrigation

g 2?(5)“1’:,];’},2;6& ;nf quaht)'/. Three levels of irrigation were us]:d ingthe ex;:it:e:;\?lgosn

et binck dosion o ont 311 :r ap;_)hed)., and th.e experiment was arranged in a randomized ¢ m-

s ho weiah o ouis 0 ; or soil variability in the field. One of the response variables meas;’ mci

o The maber ot ol ,ﬁir plot 1m' the gmount of sweet corn in the plot that was unsuitable for mr:r-

soil moisture was optirnize?c;3 rt{? gt:lffifl?tizdctrltl:; ;‘;g:t]idtliffea 'th? e

o, was op ' ¢ variation in plant

(y =c:n l;}tlr lt‘}:n: 1mﬂg1at10n levels imposed after the crop was established. Tlile oliszfifc;m'“]rgs I}Ot i
ons/hectare) and = plants in a 40-foot section of row are shown in the tﬁ)ele o eull

Irrigation Level

ji 2 3
Block y x ¥y X ¥y oox
1 1.5 45 1.9 54 1.1 43
g 3.1 58 1.8 57 1.8 60
3 3.8 6l 29 55 37 M
4 33 59 23 36 1.8 48
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a. Use plants-per-40-feet of row as a covariate for yield of culls, and write a linear model for the
experiment, identify each of the terms in the model, and state the assumptions for the model.

b. Conduct the analysis of covariance, and test the significance of the covariate and adjusted
treatment means.

c. Show the value of the regression coefficient. Compute the adjusted treatment means, their
standard errors, and an average standard error of the difference between two adjusted means.

d. Compute the efficiency of the govariance adjustment.

e. Discuss the results of the experiment and the effectiveness of the covariance adjustment.

An experiment was conducted in a randomized complete block design to study the effect of natural
control, Bacillus, and a standard chemical insecticide for control of hornworm infestations on a
crop plant. The treatments included four sources of Bacillus (Treatments 1—4), a standard chemical
treatment (Treatment 5), and a control of no treatment (Treatment 6). The treatments were applied
to plants grown in field plots in the field. The number of hornworms (count) on each plant were
counted prior to treatment. The number of live homworms (five) were counted 20 hours after appli-
cation of the treatment. The data for each plot are shown in the table.

Block
1 2 3 4
Treatment Count Live Count Live Count Live Count Live
Bacillus | 15 17 25 26 18 21 23 26
Bacillus 2 19 18 21 22 20 19 19 20
Bacillus 3 19 19 19 21 21 23 25 22
Bacillus4 22 14 31 26 17 17 19 19
Chemical 17 5 22 6 26 13 k] 10
Control 22 25 14 19 22 26 23 27

“a  Use the count of hornworms before {reatment as a covariate for the number of live hornworms
20 hours after treatment, and write a linear model for the experiment, identify each of the
terms in the model, and state the assumptions for the model.

b. Conduct the analysis of covariance, and test the significance of the covariate and adjusted
freatment means.

c. Show the value of the regression coefficient. Compute the adjusted treatment means, their
standard errors, and an average standard error of the difference between two adjusted means.

d. Compute the efficiency of the covariance adjustment. :

Discuss the results of the experiment and the effectiveness of the covariance adjustment.

f  The response variable is a count measure and likely does not have a normal distribution. Did
you check the assumptions of homogeneous variance and normal distributions of experimental
etrors for the model? 1f not, do so now, and if necessary take corrective actions {according to
discussions in Chapter 4) and repeat parts (b) through (e).

o

The analysis of covariance can be used to estimate a missing value in a blocked design and provide
an unbiased estimate of the treatment sum of squares to test the hypothesis of no differences among
the treatment means with a missing value (Coons, 1957).

EXERCISES 575

o ﬂz:\e?l;fsar.:fgte x isl intre:ciiuced for the missing value. The covariate is assigned the value z = — 1
. sing 1 value and x = 0 for all other values of y th issi 0

assigned to the Fnissing value. Compute a regular analysig of ito?;i[;ﬁz;n Elstl; %h: "i'ﬂ“e °f§/ redto
Yy and _the covariate z, The estimate of the missing value is the estimate of the rf:,c:v‘l":ﬂ:as:;li.caslE’;:SSlngne('j "
B = Egy/Ezz, and the adjusted treatment sum of squares in the analysis of covariance i l:)e o
sum of squares to tesF the null hypothesis of no differences among the treatment m::r?sls fhe corred
Exer?is; : ;i“;cr;lzrrllsdtr?t:lon otfhthe tech.mque use the data for the randomized complete bl(;ck design in
Exercise | 2 A gnore the covana.te, = nurpberl of plants, for this exercise. Assume the obser-
v Y 9 on 1qlgat10n level 2 in block 3 is missing and assign it the value y = 0. Construct
¢ 1;3 ?f]\lv cov?rlgte with x = - ] for.the missing.va_iue and z = 0 for all other values of y and con-

ct the analysis of covariance. Estimate the missing value, and use the adjusted me ,
treatments to test the hypothesis of no difference among the treatment means o0 sauare for

]iil)legscéli‘:): a Stl‘l:dy iz yourhown field in which a covariate is used in addition to or in place of a block
rion to reduce the error variance and adjust treatment m ide justi :

\ : : eans. Provide justification for th
use of the covariate values directly in the statistical model in place of blocking on the covariatee

an jUSt]'fy 1ts use on th baSiS hat 1t 15 no t [J ar lp c Il()]l[ d l()ll]—
> . It X
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